Quantcast
Jump to content


Recommended Posts

Posted

Since last year, Samsung Art Store users have been able to display iconic artwork from The Metropolitan Museum of Art (The Met) on The Frame — transforming the TV into a digital canvas that infuses artistic flair into any space. By partnering with Samsung, the public has a chance to view historical artifacts through immersive digital experiences that can be enjoyed from home.

 

The Met seeks to expand art education while exploring new ways for technology to positively impact cultural exchange and inspire audiences around the world. The goal is to bridge the gap between the past and the present to create a future where beauty and creativity can flourish anywhere.

 

Samsung Newsroom sat down with Stephen Mannello, Head of Retail and Licensing at The Met, to discuss the partnership with Samsung and how technology can positively influence the museum experience.

 

Art-Store-The-Met_main1.jpg

▲ The Metropolitan Museum of Art has partnered with Samsung Art Store to democratize access to its world-class collection of art.

 

 

A New Partnership for the Digital Age

Q: What is your role at The Met? How do you influence the museum and visitor experience?

 

I’m the Head of Retail and Licensing at The Met which means I work with The Met Store and our licensees to develop products, publications and experiences that draw from the museum’s vast collection of art spanning 5,000 years and bring it into the hands of consumers around the world.

 

My role offers a unique opportunity to create a connection with visitors and consumers through products that engage, educate and inspire them to experience The Met’s 19 different collection areas in new ways. Proceeds from our work go back to support the study, conservation and presentation of The Met’s collection, so there is a tangible impact to the products and experiences we develop.

 

“We are looking forward to evolving and experimenting with how we continue The Met’s mission to bring art into the everyday, and technology is an essential mode of making that happen.”

 

 

Q: What was the initial focus for The Met when it began collaborating with Samsung Art Store last fall?

 

Working with Samsung Art Store allowed us to step into a unique space where technology meets digital innovation and interior design. Our inaugural collection spans time and place to include highlights from The Met’s 17 curatorial departments which users of The Frame can explore and display in their homes.

 

Sharing these beloved works with Samsung Art Store has allowed us to present a small part of what The Met has to offer to a global audience of art and design lovers like never before — and this is only the beginning of what we hope will be a longstanding relationship. We look forward to sharing more of our collection and exploring different thematic offerings that inspire and delight Samsung Art Store users in the future.

 

 

Q: Over the past few months, how have The Frame users responded to The Met’s collection?

 

We were overwhelmed to see how popular artwork from The Met has been on the platform. It is a true testament to the enduring appeal of pieces like Vincent van Gogh’s “Wheat Field with Cypresses” or Emanuel Leutze’s “Washington Crossing the Delaware” — both of which are popular attractions in our galleries and translate beautifully when experienced digitally on The Frame.

 

Art-Store-The-Met_main2.jpg

▲ “Wheat Field with Cypresses” by Vincent van Gogh on The Frame

 

 

Impressionism With The Met and Art Store

Q: Samsung Art Store will feature a selection of Impressionist works this month from The Met’s collection. What is the significance of this new selection?

 

The Impressionist movement began in 1874, just four years after The Met was founded. While the two events are independent of each other, there is an interesting parallel in the revolutionary spirit of artists like Edgar Degas and Camille Pissarro — who led the charge in this radical style of artmaking that put a new emphasis on everyday life — and the foundation of The Met which sought to democratize art by bringing it to the masses.

 

Since the foundation of the movement 150 years ago, The Met has become home to dozens of renowned Impressionist pieces that endure as visitor favorites. The visual splendor of this artwork is supported by so many wonderful stories. For example, “The Monet Family in their Garden at Argenteuil” was painted by Edouard Manet in 1874 while the two artists were vacationing near one another. As this piece was being made, Monet in turn painted Manet, and Renoir simultaneously painted “Madame Monet and Her Son” (now in the National Gallery of Art in Washington, D.C.). These works of art speak volumes about the vibrant creative exchange that took place between Impressionists at the outset of the movement.

 

 

Q: Out of the artwork selected for Samsung Art Store, which three would you recommend for The Frame?

 

Art-Store-The-Met_main3.jpg

▲“View from Mount Holyoke, Northampton, Massachusetts, after a Thunderstorm–The Oxbow” (1836) by Thomas Cole

 

First is Thomas Cole’s “View from Mount Holyoke, Northampton, Massachusetts, after a Thunderstorm–The Oxbow” (1836). This impressive Hudson River School landscape painting juxtaposes untamed wilderness and pastoral settlement to spotlight the beauty of American scenery — with a vast array of possible interpretations to the artist’s message. Hidden in the foreground, Cole includes himself at his easel capturing the breathtaking scene. The fine details and enigmatic nature of the work make for captivating viewing at home.

 

Art-Store-The-Met_main4.jpg

▲ “Circus Sideshow (Parade de Cirque)” (1887-88) by Georges Seurat

 

Next is Georges Seurat’s “Circus Sideshow (Parade de Cirque)” (1887-88). This groundbreaking painting is the artist’s first nighttime scene and the first to depict popular entertainment. At the time this piece was made, the parade, or sideshow, was a free attraction designed to lure passersby to purchase tickets to the main circus event. The excellent details of this Pointillist composition are especially easy to appreciate on the Frame.

 

Art-Store-The-Met_main5.jpg

▲ “Still Life with Apples and a Pot of Primroses” (ca. 1890) by Paul Cézanne

 

Finally, I’d recommend Paul Cézanne’s “Still Life with Apples and a Pot of Primroses” (ca. 1890). This elegant still life was once owned by Claude Monet — an enthusiastic gardener — and was gifted to him by the painter Paul Helleu who famously created the astrological ceiling design at Grand Central Station. With its bold colors and graphic lines, this beautiful work demonstrates Cézanne’s mastery of the still life and is sure to enhance any room.

 

 

Q: In your opinion, how has The Met leveraged The Frame and Samsung Art Store to further support its aspirations to bring audiences across different countries and cultures together and draw unexpected connections?

 

This digital activation has offered a powerful extension of the museum experience at home. Just like visiting galleries, different works resonate with different people at different moments in their lives. It is exciting to see users continually select and change the artwork on display in their homes to suit their mood, design aesthetic or even season. Visiting museums should be about discovery and curiosity with an element of the unexpected. The Met’s feature on Samsung Art Store is a successful example of translating a physical experience into a digital one.

 

 

Technology’s Impact on Art and Accessibility

Q: How do you perceive the impact of art on individuals and its influence on collective culture? How does The Met contribute to that impact?

 

The Met is a space for everyone to be inspired, learn and discover unexpected connections across time and place. Our collection highlights more than 1.5 million examples of human creative achievement from around the world — allowing visitors to the museum and our website to immerse themselves in art. Experiencing The Met and its pieces offers an opportunity to reflect, ask questions and explore untapped creativity and ideas.

 

“There is an interesting parallel in the revolutionary spirit of [the Impressionist movement] that put a new emphasis on everyday life and the foundation of The Met which sought to democratize art.”

 

 

Q: In your opinion, why is it essential to democratize access to art by making it available to a wider audience through platforms like Samsung Art Store?

 

We believe that art is for all, but many individuals who come to The Met may only visit once in their lifetime. Expanding access through digital activations, products and experiences allows us to have a lasting relationship with art lovers around the world. We hope that sharing The Met’s collection on The Frame can help spark meaningful dialogue about culture and creativity in the past, present and future.

 

 

Q: What role do you see technology playing in enhancing the museum experience, especially in the context of digital art platforms like Samsung Art Store?

 

Engaging with art enthusiasts digitally allows us to spotlight pieces across The Met’s collection in new ways, enabling discovery and exploration. That might mean viewing works that are not on display in the galleries, learning the stories behind the art and artists or zooming in on details — but these are just the early possibilities of bringing physical works of art into the digital space. We are looking forward to evolving and experimenting with how we continue The Met’s mission to bring art into the everyday, and technology is an essential mode of making that happen.

View the full article



  • Replies 0
  • Created
  • Last Reply

Top Posters In This Topic

Popular Days

Top Posters In This Topic

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
  • Similar Topics

    • By Samsung Newsroom
      April 2025 New & Updated Features of Samsung Health Accessory SDK
      Introducing the newly updated Samsung Health Accessory SDK. 
      The innovative bridge for integrating Samsung Health with partner device data, the Accessory SDK has been enhanced with new features such as Cycling Power Sensor, Cycling Speed & Cadence Sensor, and Thermometer. Existing features have also been improved.
      The SDK consolidates scattered user health data from various devices into Samsung Health, enabling more precise, data-driven health management and ultimately delivering greater value to our users. Enrich user health journey with the new and improved Accessory SDK.

      Learn More Samsung IAP Unity Plugin v6.3.0
      Samsung In-App Purchase (IAP) supports not only the Android SDK, but also the Unity Plugin for applications built with Unity.
      On March 19, the Unity Plugin with the latest version of Samsung IAP 6.3.0 was released, and the programming guide was also partially updated for developer convenience.
      This update has added new APIs for checking subscription promotion eligibility and changing subscription plans. It is also possible to check price changes for active subscriptions, enabling more flexible and precise subscription management. Learn more on the Samsung Developer Portal.

      Learn More Your First Step Towards Becoming a Samsung Wallet Partner
      Are you considering a partnership with Samsung Wallet? Check out the onboarding video and blog content created by the Samsung Wallet team that provide clear and easy guidance for the partner onboarding process. The Samsung Wallet team is always committed to communicating with and growing alongside more partners. Get familiar with the onboarding process on the blog today and register as a Samsung Wallet partner!

      Learn More Samsung Electronics Unveils Latest SmartThings Update
      SmartThings strives to make the platform more valuable for our end users, partners, and developers, with our goal to empower users to create exceptional experiences. In Q1 2025, Samsung SmartThings launched key updates to enhance home AI. The highlight of this quarter is the integration of SmartThings with Samsung Health, which is designed to improve users' sleep environments while enabling more personalized automation experiences. The update also expands Calm Onboarding to support a wider range of devices and adds compatibility with the Matter 1.4 standard.

      Learn more about all the updates here. Tutorial: How to Apply LUT Profiles to Samsung Log Videos in Premiere Pro
      Did you know that you can create cinematic videos like a pro with just a Galaxy device, without professional equipment? Samsung Log is a new camera application feature introduced with the Galaxy S25 series. It brings the power of log filming, once exclusive to professional cameras, to your smartphone. Log is a flat, desaturated color profile that preserves more image data, optimizing it for color correction and post-production. Filming in Log profiling is favored by professional videographers for its flexibility in color grading, allowing them to bring out more cinematic and visually appealing videos.

      Check out the tutorial video to learn how you can easily color grade your Samsung Log video clips in Adobe Premiere Pro using LUT profiles created by Samsung. Get professional-looking results with just a few clicks! Configuring Instant Server Notifications for Samsung IAP
      Samsung IAP's Instant Server Notification (ISN) service ensures developers stay informed about user actions. When users trigger events such as completing in-app purchases or modifying subscriptions, the developer receives notifications with the details of the event, enabling them to track and manage user transactions more effectively. It's a seamless way to ensure developers stay up to date.

      Check out our blog post to find out how to configure a server to manage the supported events sent by the Samsung IAP ISN service.

      Learn More Evaluation of Wearable Head BCG for PTT Measurement in Blood Pressure Intervention
      Managing hypertension and cardiovascular risk demands frequent and accurate blood pressure monitoring. Traditional cuff-based methods, however, have limitations in their portability and real-time measuring aspect.

      Samsung Research America has proposed a new system that enables continuous blood pressure tracking using an over-the-ear wireless wearable device. The system uses sensors to capture both ballistocardiography (BCG) and photoplethysmography (PPG) signals, and calculate the pulse transit time (PTT) by combining these two bio-signals. Learn about the potential of a future healthcare solution that lets you track blood pressure with everyday wireless earphones on the Samsung Research blog.

      Learn More CheapNVS: Real-Time On-Device Novel View Synthesis for Mobile Applications
      Novel View Synthesis (NVS) is an innovative technology as it lets you reconstruct a scene from various perspectives. However, as NVS requires a lot of computation, it relies heavily on high-performance GPUs or cloud servers. Accordingly, it has limitations related to the cost, and is difficult to apply in real time on mobile devices.

      In order to tackle these issues, Samsung R&D Institute United Kingdom presents CheapNVS, a lightweight NVS system based on neural networks that you can run even on your smartphone. This model takes in a single input image and a new camera pose, and then leverages hardware-friendly network design to both perform image warping and then inpainting to fill in the occluded areas. With its novel parallelizable NVS formulation, it manages to speed-up execution while avoiding the use of costly structures such as multi-plane images. CheapNVS, implementable without complex 3D modeling or expensive computations, is a next-generation technology that can be used for a variety of mobile applications including video calls and 3D image conversion. It is more lightweight than conventional methods by a factor of 20 or more, running quickly and efficiently even on mobile SoC environments. Learn more about this innovative technology on the Samsung Research blog.

      Learn More View the full blog at its source
    • By Samsung Newsroom
      Samsung Electronics today announced that it has retained its position as the world’s leading gaming monitor brand for the sixth consecutive year, according to the latest data from the International Data Corporation (IDC).
       
      Based on total revenue, Samsung captured a leading 21.0% share of the global gaming monitor market in 2024,1 reaffirming its dominance in a fast-evolving, performance-driven industry. Samsung also ranked first in the global OLED monitor segment for the second year in a row, reaching a 34.6% market share just two years after launching its first OLED model.2
       

       
      “Samsung’s momentum in the gaming display market reflects our relentless pursuit of innovation and deep understanding of what today’s gamers need,” said Hoon Chung, Executive Vice President of the Visual Display Business at Samsung Electronics. “From immersive 3D experiences to industry-leading OLED performance, we’re shaping the future of gaming.”
       
      Samsung’s continued growth is fueled by its powerful Odyssey gaming monitor lineup, which sets the standard for immersive and high-performance gaming through a variety of models:
       
      Odyssey 3D (G90XF model): A revolutionary 27” monitor that delivers immersive glasses-free 3D gaming, powered by eye-tracking and proprietary lenticular lens technology. With seamless 2D-to-3D video conversion via Reality Hub, a 165Hz refresh rate and an ultra-fast 1ms GTG response time, the monitor redefines interactivity and realism. Odyssey OLED G8 (G81SF model): A cutting-edge 27” or 32” 4K 240Hz OLED gaming monitor that delivers exceptional color accuracy and ultra-fast performance through advanced QD-OLED technology. It features the industry’s highest pixel density in its class, a 0.03ms GTG response time and Samsung OLED Safeguard+ to protect against burn-in. Odyssey OLED G6 (G60SF model): A 27” QHD QD-OLED monitor with an ultra-fast 500Hz refresh rate and a 0.03ms GTG response time — planned for launch in the second half of 2025. The Odyssey G6 extends Samsung’s leadership into the competitive gaming segment, bringing elite-level speed and responsiveness.  
      At the core of this next-generation lineup is Samsung’s proprietary Quantum Dot OLED technology, which enhances color accuracy, contrast and brightness across all viewing angles — making it the preferred choice for gamers seeking both stunning picture quality and elite performance. The performance of all three monitors is further enhanced by being NVIDIA G-SYNC Compatible and having support for AMD FreeSync Premium Pro,3 which reduce stuttering, choppiness and lag for the ultimate OLED gaming experience.
       

       

       
      The Odyssey 3D and the Odyssey OLED G8 are available globally, and the Odyssey OLED G6 will be available globally in the second half of 2025.
       
      For more information about Samsung’s gaming monitor lineup, please visit www.samsung.com/.
       
       
      1 IDC Worldwide Gaming Tracker Q4 2024, Gaming monitor classification is based on IDC criteria: monitors with refresh rates over 144Hz (since Q2 2023) or over 100Hz (prior to Q2 2023). Rankings are based on value amount.
      2 IDC Worldwide PC Monitor Tracker, Q4 2024 (Based on value amount, OLED Total).
      3 NVIDIA G-Sync Compatible and AMD FreeSync Premium Pro support are currently available on the Odyssey 3D and the Odyssey OLED G8, and are planned for the Odyssey OLED G6 on its launch.
      View the full article
    • By Samsung Newsroom
      The cinema industry is undergoing a profound transformation. As audiences increasingly seek premium and luxury experiences, theaters are evolving to deliver immersive, differentiated environments — and Samsung Electronics is at the forefront of this revolution.
       
      Raising the bar for cinema innovation, Samsung unveiled the latest model of Onyx (ICD) in March. The next generation of cinematic experiences will be defined by immersive visuals, improved comfort and a reliable viewing experience.
       
      In this article, Samsung Newsroom takes a closer look at the company’s vision for the future of cinema in terms of Visuals, Space and Consistency.
       
      ▲ Samsung Onyx was the center of attention at the company’s booth at CinemaCon 2025, the industry’s largest exhibition
       
       
      Visuals — An Out-of-This-World Screen Experience
      Immersion is at the heart of the cinematic experience — a setting designed to transport audiences into the world of the film. Only in an environment free from the everyday distractions such as constant calls, notifications and household chores can viewers fully engage with the story unfolding on the screen.
       
      A true cinematic experience faithfully delivers the filmmaker’s vision, presenting every detail, color and shadow exactly as intended. Onyx brings that vision to reality.
       
      ▲ Pixar’s Inside Out 2 shown on Samsung Onyx, demonstrating the display’s peak brightness and vibrant color accuracy
       
      Onyx, the world’s first cinema LED display certified1 by Digital Cinema Initiatives (DCI), delivers superior picture quality in 4K HDR resolution with vivid colors, deep blacks and infinite contrast. The clarity, precision and rich detail in each frame help give life to the narrative. Gone are the days of poor edge resolution and inconsistent brightness.
       

       
      ▲ Samsung Onyx enhances Pixar’s Lightyear (top) and Soul (bottom) with outstanding contrast, making dark scenes more vivid and immersive
       
      The Onyx screen can lend its brightness and clarity to applications other than movie screenings — live sports, concerts, gaming events and corporate presentations, for example. The ability to host alternative content empowers theaters to diversify their offerings and create new revenue streams without compromising the premium viewing experience.
       
      ▲ A live concert seen on Onyx, demonstrating the display’s color accuracy and sharp details
       

      Space — More Room for Comfort and Flexibility
      Comfort and spatial design are also key factors that set premium cinemas apart. Much like the distinction between economy and business class on an airplane, the seating experience can make or break a theater’s appeal. As theaters evolve into premium auditoriums, spacious, comfortable seating becomes essential.
       
      Onyx helps enable this transformation. Unlike traditional projectors which require separate projection rooms and large setups, Onyx’s cinema LED technology maximizes the available space in a theater. This allows cinemas to optimize their auditorium spaces and provides more flexibility to install specialized seating like larger recliners or dining tables.
       
      Furthermore, new Onyx (ICD) offers flexible scaling options, allowing screens to be customized to fit the dimension of each auditorium, ensuring the best use of space without sacrificing picture quality and comfort.
       
      ▲ Pixar’s Elio screened on Samsung Onyx featuring luxury seating for a premium cinema experience
       
      With Onyx, every seat in the theater offers a reliable high-quality visual experience — no edge distortion or resolution loss — ensuring that the entire audience is fully immersed in the story. The combination of optimized space, enhanced comfort and stunning visuals elevates the overall cinema experience.
       
      ▲ Samsung Onyx empowers theaters to deliver a premium cinema experience and luxury dining for customers.
       
       
      Consistency — Reliable Viewing Quality With Smarter Management Tools
      We go to the theater to be transported — to lose ourselves in the world of a story. But experiences in traditional projection-based theaters can deteriorate with picture quality that varies depending on the age and condition of the equipment.
       
      Samsung’s Cinema LED screen, on the other hand, features an ‘Auto Calibration Solution’ that automatically adjusts color consistency across each module, ensuring optimal picture quality — not just at installation, but every step of the way through ongoing maintenance.
       
      Onyx also offers the industry’s first and longest 10-year warranty for cinema LED,2 raising the bar for long-term reliability in cinema technology.
       
      ▲ Samsung Onyx, an out-of-this-world cinema LED display
       
      Since debuting the world’s first Cinema LED screen in 2017, Onyx has built strong partnerships with major global film studios, earning trust and recognition across the industry. As the leader in Cinema LED technology, Samsung is committed to pushing boundaries — so the magic of the movies is always seen exactly as it was meant to be.
       
      With Samsung Onyx, the future of premium cinema is brighter, clearer and more immersive than ever before.
       
       
      1 Digital Cinema Initiatives (DCI) is a consortium of major film studios established to define specifications for an open architecture in digital cinema systems.
      2 Based on internal research and publicly available information. Onyx includes a standard three-year warranty, with options to extend coverage up to 10 years.
      View the full article
    • By Samsung Newsroom
      “One of the reasons Samsung focused on quantum dots is their exceptionally narrow peaks of the emission spectrum.”
      — Sanghyun Sohn, Samsung Electronics
       
      In 2023, the Nobel Prize in Chemistry was awarded for the discovery and synthesis of quantum dots. The Nobel Committee recognized the groundbreaking achievements of scientists in the field — noting that quantum dots have already made significant contributions to the display and medical industries, with broader applications expected in electronics, quantum communications and solar cells.
       
      Quantum dots — ultra-fine semiconductor particles — emit different colors of light depending on their size, producing exceptionally pure and vivid hues. Samsung Electronics, the world’s leading TV manufacturer, has embraced this cutting-edge material to enhance display performance.
       
      Samsung Newsroom sat down with Taeghwan Hyeon, a distinguished professor in the Department of Chemical and Biological Engineering at Seoul National University (SNU); Doh Chang Lee, a professor in the Department of Chemical and Biomolecular Engineering at the Korea Advanced Institute of Science and Technology (KAIST); and Sanghyun Sohn, Head of Advanced Display Lab, Visual Display (VD) Business at Samsung Electronics, to explore how quantum dots are ushering in a new era of display technology.
       
      Understanding the Band Gap Quantum Dots – The Smaller the Particle, the Larger the Band Gap Engineering Behind Quantum Dot Films Real QLED TVs Use Quantum Dots To Create Color  

       
       
      Understanding the Band Gap
       
      “To understand quantum dots, one must first grasp the concept of the band gap.”
      — Taeghwan Hyeon, Seoul National University
       
      The movement of electrons causes electricity. Typically, the outermost electrons — known as valence electrons — are involved in this movement. The energy range where these electrons exist is called the valence band, while a higher, unoccupied energy range that can accept electrons is called the conduction band.
       
      An electron can absorb energy to jump from the valence band to the conduction band. When the excited electron releases that energy, it falls back into the valence band. The energy difference between these two bands — the amount of energy an electron must gain or lose to move between them — is known as the band gap.
       
      ▲ A comparison of energy band structures in insulators, semiconductors and conductors
       
      Insulators like rubber and glass have large band gaps, preventing electrons from moving freely between bands. In contrast, conductors like copper and silver have overlapping valence and conduction bands — allowing electrons to move freely for high electrical conductivity.
       
      Semiconductors have a band gap that falls between those of insulators and conductors — limiting conductivity under normal conditions but allowing electrical conduction or light emission when electrons are stimulated by heat, light or electricity.
       
      “To understand quantum dots, one must first grasp the concept of the band gap,” said Hyeon, emphasizing that a material’s energy band structure is crucial in determining its electrical properties.
       
       
      Quantum Dots – The Smaller the Particle, the Larger the Band Gap
       
      “As quantum dot particles become smaller, the wavelength of emitted light shifts from red to blue.”
      — Doh Chang Lee, Korea Advanced Institute of Science and Technology
       
      Quantum dots are nanoscale semiconductor crystals with unique electrical and optical properties. Measured in nanometers (nm) — or one-billionth of a meter — these particles are just a few thousandths the thickness of a human hair. When a semiconductor is reduced to the nanometer scale, its properties change significantly compared to its bulk state.
       
      In bulk states, particles are sufficiently large so the electrons in the semiconductor material can move freely without being constrained by their own wavelength. This allows energy levels — the states that particles occupy when absorbing or releasing energy — to form a continuous spectrum, like a long slide with a gentle slope. In quantum dots, electron movement is restricted because the particle size is smaller than the electron’s wavelength.
       
      ▲ Size determines the band gap in quantum dots
       
      Imagine scooping water (energy) from a large pot (bulk state) with a ladle (bandwidth corresponding to an electron’s wavelength). Using the ladle, one can adjust the amount of water in the pot freely from full to empty — this is the equivalent of continuous energy levels. However, when the pot shrinks to the size of a teacup — like a quantum dot — the ladle no longer fits. At that point, the cup can only be either full or empty. This illustrates the concept of quantized energy levels.
       
      “When semiconductor particles are reduced to the nanometer scale, their energy levels become quantized — they can only exist in discontinuous steps,” said Hyeon. “This effect is called ‘quantum confinement.’ And at this scale, the band gap can be controlled by adjusting particle size.”
       
      The number of molecules within the particle decreases as the size of the quantum dot decreases, resulting in weaker interactions of molecular orbitals. This strengthens the quantum confinement effect and increases the band gap.1 Because the band gap corresponds to the energy released through relaxation of an electron from the conduction band to the valence band, the color of the emitted light changes accordingly.
       
      “As particles become smaller, the wavelength of emitted light shifts from red to blue,” said Lee. “In other words, the size of the quantum dot nanocrystal determines its color.”
       
       
      Engineering Behind Quantum Dot Films
       
      “Quantum dot film is at the core of QLED TVs — a testament to Samsung’s deep technical expertise.”
      — Doh Chang Lee, Korea Advanced Institute of Science and Technology
       
      Quantum dots have attracted attention across a variety of fields, including solar cells, photocatalysis, medicine and quantum computing. However, the display industry was the first to successfully commercialize the technology.
       
      “One of the reasons Samsung focused on quantum dots is the exceptionally narrow peaks of their emission spectrum,” said Sohn. “Their narrow bandwidth and strong fluorescence make them ideal for accurately reproducing a wide spectrum of colors.”
       
      ▲ Quantum dots create ultra-pure red, green and blue (RGB) colors by controlling light at the nanoscale, producing narrow bandwidth and strong fluorescence.
       
      To leverage quantum dots effectively in display technology, materials and structures must maintain high performance over time, under harsh conditions. Samsung QLED achieves this through the use of a quantum dot film.
       
      “Accurate color reproduction in a display depends on how well the film utilizes the optical properties of quantum dots,” said Lee. “A quantum dot film must meet several key requirements for commercial use, such as efficient light conversion and translucence.”
       
      ▲ Sanghyun Sohn
       
      The quantum dot film used in Samsung QLED displays is produced by adding a quantum dot solution to a polymer base heated to a very high-temperature, spreading it into a thin layer and then curing it. While this may sound simple, the actual manufacturing process is highly complex.
       
      “It’s like trying to evenly mix cinnamon powder into sticky honey without making lumps — not an easy task,” said Sohn. “To evenly disperse quantum dots throughout the film, several factors such as materials, design and processing conditions must be carefully considered.”
       
      Despite these challenges, Samsung pushed the boundaries of the technology. To ensure long-term durability in its displays, the company developed proprietary polymer materials specifically optimized for quantum dots.
       
      “We’ve built extensive expertise in quantum dot technology by developing barrier films that block moisture and polymer materials capable of evenly dispersing quantum dots,” he added. “Through this, we not only achieved mass production but also reduced costs.”
       
      Thanks to this advanced process, Samsung’s quantum dot film delivers precise color expression and outstanding luminous efficiency — all backed by industry-leading durability.
       
      “Brightness is typically measured in nits, with one nit equivalent to the brightness of a single candle,” explained Sohn. “While conventional LEDs offer around 500 nits, our quantum dot displays can reach 2,000 nits or more — the equivalent of 2,000 candles — achieving a new level of image quality.”
       
      ▲ RGB gamut comparisons between visible light spectrum, sRGB and DCI-P3 in a CIE 1931 color space
      * CIE 1930: A widely used color system announced in 1931 by the Commission internationale de l’éclairage
      * sRGB (standard RGB): A color space created cooperatively by Microsoft and HP in 1996 for monitors and printers
      * DCI-P3 (Digital Cinema Initiatives – Protocol 3): A color space widely used for digital HDR content, defined by Digital Cinema Initiatives for digital projectors
       
      By leveraging quantum dots, Samsung has significantly enhanced both brightness and color expression — delivering a visual experience unlike anything seen before. In fact, Samsung QLED TVs achieve a color reproduction rate exceeding 90% of the DCI-P3 (Digital Cinema Initiatives – Protocol 3) color space, the benchmark for color accuracy in digital cinema.
       
      “Even if you have made quantum dots, you need to ensure long-term stability for them to be useful,” said Lee. “Samsung’s industry-leading indium phosphide (InP)-based quantum dot synthesis and film production technologies are testament to Samsung’s deep technical expertise.”
       
       
      Real QLED TVs Use Quantum Dots To Create Color
       
      “The legitimacy of a quantum dot TV lies in whether or not it leverages the quantum confinement effect.”
      — Taeghwan Hyeon, Seoul National University
       
      As interest in quantum dots grows across the industry, a variety of products have entered the market. Nonetheless, not all quantum dot-labeled TVs are equal — quantum dots must sufficiently contribute to actual image quality.
       
      ▲ Taeghwan Hyeon
       
      “The legitimacy of a quantum dot TV lies in whether or not it leverages the quantum confinement effect,” said Hyeon. “The first, fundamental requirement is to use quantum dots to create color.”
       
      “To be considered a true quantum dot TV, quantum dots must serve as either the core light-converting or primary light-emitting material,” said Lee. “For light-converting quantum dots, the display must contain an adequate amount of quantum dots to absorb and convert blue light emitted by the backlight unit.”
       
      ▲ Doh Chang Lee
       
      “Quantum dot film must contain a sufficient amount of quantum dots to perform effectively,” repeated Sohn, emphasizing the importance of quantum dot content. “Samsung QLED uses more than 3,000 parts per million (ppm) of quantum dot materials. 100% of the red and green colors are made through quantum dots.”
       
        
      Samsung began developing quantum dot technology in 2001 and, in 2015, introduced the world’s first no-cadmium quantum dot TV — the SUHD TV. In 2017, the company launched its premium QLED lineup, further solidifying its leadership in the quantum dot display industry.
       
      In the second part of this interview series, Samsung Newsroom takes a closer look at how Samsung not only commercialized quantum dot display technology but also developed a cadmium-free quantum dot material — an innovation recognized by Nobel Prize-winning researchers in chemistry.
       
       
      1 When a semiconductor material is in its bulk state, the band gap remains fixed at a value characteristic of the material and does not depend on particle size.
      View the full article
    • By Samsung Newsroom
      “Samsung’s QLED technology played a crucial role in bringing quantum dots to the level of recognition needed for the Nobel Prize in Chemistry.”
      — Taeghwan Hyeon, Seoul National University
       
      Quantum dots have been at the forefront of display innovation over the past decade, delivering some of the most accurate color reproduction among existing materials. In 2015, Samsung Electronics paved the way for the commercialization of quantum dots with the launch of SUHD TVs — a breakthrough that moved beyond the use of cadmium (Cd), a heavy metal traditionally utilized in quantum dot synthesis, by introducing the world’s first no-cadmium quantum dot technology.
       
      The academic world took notice. The successful commercialization of cadmium-free quantum dot TVs not only set a new direction for research and development but also played a pivotal role in the awarding of the 2023 Nobel Prize in Chemistry for the discovery and synthesis of quantum dots.
       
      Following Part 1, Samsung Newsroom uncovers how Samsung has contributed to academia through groundbreaking advances in material innovation.
       
      ▲ (From left) Taeghwan Hyeon, Doh Chang Lee and Sanghyun Sohn
       
       
      Why Cadmium Was the Starting Point for Quantum Dot Research
       
      “I was truly impressed that Samsung succeeded in commercializing a no-cadmium quantum dot display product.”
       — Taeghwan Hyeon, Seoul National University
       
      Quantum dots began attracting scientific interest in the 1980s when Aleksey Yekimov, former Chief Scientist at Nanocrystals Technology Inc., and Louis E. Brus, a professor emeritus in the Department of Chemistry at Columbia University, each published their researches on the quantum confinement effect and the size-dependent optical properties of quantum dots.
       
      Momentum accelerated in 1993 when Moungi Bawendi, a professor in the Department of Chemistry at the Massachusetts Institute of Technology (MIT), developed a reliable method for synthesizing quantum dots. In 2001, Taeghwan Hyeon, a distinguished professor in the Department of Chemical and Biological Engineering at Seoul National University (SNU), invented the “heat-up process” — a technique for producing uniform nanoparticles without the need for size-selective separation. In 2004, Hyeon published a scalable production method in the academic journal Nature Materials — a discovery widely regarded as a potential game changer in the industry.
       
      ▲ Taeghwan Hyeon
       
      However, these efforts did not immediately lead to commercialization. At the time, quantum dots relied heavily on cadmium(Cd) as a core material — a substance known to be harmful to humans and designated as a restricted material under the European Union’s Restriction of Hazardous Substances (RoHS) Directive.
       
      “Currently, the only materials capable of reliably producing quantum dots are cadmium selenide (CdSe) and indium phosphide (InP),” explained Hyeon. “Cadmium selenide, the conventional quantum dot material, is a compound of group II and group VI elements, while indium phosphide is formed from group III and group V elements. Synthesizing quantum dots from group II and VI elements is relatively straightforward, but combining group III and V elements is chemically much more complex.”
       
      ▲ A comparison of cadmium-based quantum dots with ionic bonds and indium-based quantum dots with covalent bonds
       
      Cadmium, an element with two valence electrons, forms strong ionic bonds1 with elements like selenium (Se), sulfur (S) and tellurium (Te) — each of which has six valence electrons. These combinations result in stable semiconductors, known as II–VI semiconductors, materials that have long been favored in research for their ability to produce high-quality nanocrystals even at relatively low temperatures. As a result, the use of cadmium in quantum dot synthesis was considered an academic standard for many years.
       
      In contrast, indium (In) — an alternative to cadmium with three valence electrons — forms covalent bonds2 with elements such as phosphorus (P), which has five valence electrons. Covalent bonds are generally less stable than ionic bonds and have a directional nature, increasing the likelihood of defects during nanocrystal synthesis. These characteristics have made indium a challenging material to work with in both research and mass production.
       
      “It is difficult to achieve high crystallinity in quantum dots made from indium phosphide,” Lee noted. “A complex and demanding synthesis process is required to meet the quality standards necessary for commercialization.”
       
       
      No Compromise – From Breakthrough to Mass Production
       
      “There is simply no room for compromise when it comes to consumer safety.”
      — Sanghyun Sohn, Samsung Electronics
       
      Samsung, however, took a different approach.
       
      “We had been researching and developing quantum dot technology since 2001,” said Sanghyun Sohn, Head of Advanced Display Lab, Visual Display (VD) Business at Samsung Electronics. “But early on, we determined that cadmium — which is harmful to the human body — was not suitable for commercialization. While regulations in some countries technically allow up to 100 parts per million (ppm) of cadmium in electronic products, Samsung adopted a zero-cadmium policy from the start. No cadmium, no compromise — that was our strategy. There is simply no room for compromise when it comes to consumer safety.”
       
      ▲ Sanghyun Sohn
       
      Samsung’s long-standing commitment to its principle of “No Compromise on Safety” came to the forefront in 2014 when the company successfully developed the world’s first no-cadmium quantum dot material. To ensure both durability and image quality, Samsung introduced a triple-layer protective coating technology that shields indium phosphide nanoparticles from external factors such as oxygen and light. The following year, Samsung launched the world’s first commercial SUHD TV with no-cadmium quantum dots — a paradigm shift in the display industry and the culmination of research efforts that began in the early 2000s.
       
      “Indium phosphide-based quantum dots are inherently unstable and more difficult to synthesize compared to their cadmium-based counterparts, initially achieving only about 80% of the performance of cadmium-based quantum dots,” said Sohn. “However, through an intensive development process at the Samsung Advanced Institute of Technology (SAIT), we successfully raised performance to 100% and ensured reliability for more than 10 years.”
       
      ▲ The three components of quantum dots
       
      Quantum dots found in Samsung QLEDs are composed of three key components — a core, where light is emitted; a shell, which protects the core and stabilizes its structure; and a ligand, a polymer coating that enhances oxidation stability outside the shell. The essence of quantum dot technology lies in the seamless integration of these three elements, an advanced industrial process that spans from material acquisition and synthesis to mass production and the filing of numerous patents.
       
      “None of the three components — core, shell or ligand can be overlooked,” added Lee. “Samsung’s technology for indium phosphide synthesis is outstanding.”
       
      “Developing a technology in the lab is a challenge in itself, but commercialization requires an entirely different level of effort to ensure product stability and consistent color quality,” said Hyeon. “I was truly impressed that Samsung succeeded in commercializing a no-cadmium quantum dot display product.”
       
       
      Setting the Quantum Dot Standard
       
      “Research trends in the academic community shifted noticeably before and after the release of Samsung’s quantum dot TVs.”
      — Doh Chang Lee, Korea Advanced Institute of Science and Technology
       
       
      The optical properties of quantum dots are being applied to a wide range of fields, including solar cells, medicine and quantum computing. However, the quantum dot display remains the most actively researched and widely commercialized application to date — with Samsung emerging as a pioneer.
       
      Building on years of foundational research and the introduction of its SUHD TVs, Samsung launched its QLED TVs in 2017 and set a new standard for premium displays. In 2022, the company pushed innovation further with the debut of QD-OLED TVs — the world’s first display to combine quantum dots with an OLED structure.
       
      ▲ A comparison of LCD, QLED and QD-OLED structures
       
      QD-OLED is a next-generation display technology that integrates quantum dots into the self-emissive structure of OLED. This approach enables faster response times, deeper blacks and higher contrast ratios. Samsung’s QD-OLED was awarded Display of the Year in 2023 by the Society for Information Display (SID), the world’s largest organization dedicated to display technologies.
       
      “Samsung has not only led the market with its indium phosphide-based quantum dot TVs but also remains the only company to have successfully integrated and commercialized quantum dots in OLEDs,” said Sohn. “By leveraging our leadership in quantum dot technology, we will continue to lead the future of display innovation.”
       
      ▲ Doh Chang Lee
       
      “Research trends in the academic community shifted noticeably before and after the release of Samsung’s quantum dot TVs,” said Doh Chang Lee, a professor in the Department of Chemical and Biomolecular Engineering at the Korea Advanced Institute of Science and Technology (KAIST). “Since its launch, discussions have increasingly focused on practical applications rather than the materials themselves, reflecting the potential for real-world implementation through display technologies.”
       
      “There have been many attempts to apply quantum dots in various fields including photocatalysis,” he added. “But these efforts remain in the early stages compared to their use in displays.”
       
      Hyeon also noted that the successful commercialization of Samsung’s quantum dot TVs helped pave the way for Bawendi, Brus and Yekimov to receive the 2023 Nobel Prize in Chemistry.
       
      “One of the most important criteria for the Nobel Prize is the extent to which a technology has contributed to humanity through commercialization,” he said. “Samsung’s QLED represents one of the most significant achievements in nanotechnology. Without its commercialization, it would have been difficult for quantum dots to earn Nobel recognition.”
       

      Samsung’s Vision for Tomorrow’s Displays
      Since the launch of its QLED TVs, Samsung has accelerated the growth of quantum dot technology in both industry and academia. When asked about the future of quantum dot displays, the experts shared their insights on what lies ahead.
       
      “As a next-generation technology, we are currently exploring self-emissive quantum dots,” said Sohn. “Until now, quantum dots have relied on external light source to express red and green. Going forward, we aim to develop quantum dots that emit light independently through electroluminescence — producing all three primary colors by injecting electrical energy. We are also working on the development of blue quantum dots.”
       
      “As electroluminescent materials make it possible to reduce the size of device components, we’ll be able to achieve the high resolution, efficiency and brightness required for virtual and augmented reality applications,” said Lee, predicting a major transformation in the future of displays.
       
      “A good display is one the viewer doesn’t even recognize as a display,” said Sohn. “The ultimate goal is to deliver an experience that feels indistinguishable from reality. As a leader in quantum dot display innovation, we will proudly continue to move forward.”
       
      With its continued leadership and bold technological vision, Samsung is shaping the future of displays and rewriting what’s possible with quantum dots.
       
        
       
      1 An ionic bond is a chemical bond formed when electrons are transferred between atoms, creating ions that are held together by electrical attraction.
      2 A covalent bond is a chemical bond in which two atoms share electrons.
      View the full article





×
×
  • Create New...